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Abstran Although q-oscillators have been used extensively for realization of quantum 
universal enveloping algebras, such realizations do not exist for quantum matrix algebras 
(deformation of the algebra of functions on the proup). QI Ihis letter we first construct an 
infinite dimensional representation of the quantum matrix algebra M,(3) (the coordinate 
ring of GL,(3)) and then use lhis representation to realize C&(3) by q-bosons. 

Since the advent of q-oscillators or q-boson algebras [l-31 a lot of attention has been 
paid to realization of quantum universal enveloping algebras (QUEA) [4-81 in terms of 
q-oscillators. However, the corresponding task for the dual objects, i.e. quantum 
matrix algebras, has not been studied so far, except for the case of GL,(2) [9]. In this 
paper we extend the results of [9] and give a three-parameter family of q-boson 
realization for the quantum matrix algebra M,(3). 

The quantum algebra GL,(3) is generated by the elements of a matrix 

subject to the relations 

RTiTZ= TzTiR (2) 

where R is the solution of the Yang-Bixter equation corresponding to SL,(3) [5]. 

The relations obtained from (2) can be expressed neatly in the following form: for any 
2 x 2  submatrix (i.e. like the one formed by the elements b, c, e, andf) the following 
relations hold: 

bc = qcb ef = qfe 

be = qeb cf= Gfc (4) 
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ec = ce bf -fb = (q - q-')ce. 
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Remark. These relations are only a small part of the relations obtained from (2). All 
the other relations can be simply read by looking at other submatrices. (i.e. df=qfd, 
dg= qgd, dk- kd= (q - q-‘)fg, etc.). Hereafter when we refer to (4) we mean all the 
relations of which (4) is a sample. Thus this algebra has many GLq(2) subalgebras (i.e. 
the elements a, c, d, andfgenerate a GL,(2) subalgebra). Obviously these are not 
Hopf subalgebras. 

Remark. One can prove the following more general type of formula 

bf”-f”b=q-’(q2”- 1)f”-’ce (5) 

by induction from (4). 
GL,(3) has also a quantum determinant D [SI which is central: 

D = aAa - qbAb f q2cA, (6) 

where A,,, As and Ac are the quantum cofactors of the elements a, b and c respectively: 

Aa = ek-@ A b  =dk- qfg Ac = dh - qeg. (7) 

One can also see from (4) that the elements c, e and g commute with each other, a fact 
which will play an important role in building up the representation. It is clear that the 
eigenvalues of the operators c, e and g will label the states of any representations. 
What remains to be done is the choice of lowering and raising operators. At first sight 
one may try to choose the operatorsf, h and k as raising and a, b and d as lowering 
operators, and construct a Verma module out of the states II, m, n)=f’hmknlO) where 
10) is the vacuum which is an eigenstate ofc, e and g and satisfies: a10)=b10)=d10)= 
0. But this choice has the disadvantage that to compute the action of a lowering 
operator like a on II, m, n) one must use commutation relations of the type (5) many 
times, which makes the computation cumbersome and the results not illuminating. 
However, a much better approach is possible, which we now explain. 

We first construct an inhite dimensional representation of a subalgebra of M,(3). 
This subalgebra which we will denote by A is generated D and all the elements of the 
matrix T (except a and k) plus two quantum cofactors An and Ak. Hereafter we denote 
them by A and A’ respectively: 

A=ek-@ A‘ =ae- qbd. (8) 

As we will see the elements A and A’ rather thank and a will be the natural choice of 
the third pair of raising and lowering operators. The fust two pairs are cf, b) and 
(h, d). Clearly the element A being the q-determinant of the submatrix 
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commutes with the elements e, f, h and k. A similar statement holds true for A'. (i.e. 
A' commutes with a,  b ,  d and e). Using (4,s) it is straightforward to verify the 
following commutation relations: 

bA=qAb CA = qAc 

and 

CA' = q-'A'c gA' =q-'A'g 

fA'=q-'A'f hA'=q-'A'h. 

We need two other relations which we present below: 

Lemma. 
(i) a h  = q2Aa + (1 - $)D 

(ii) A'A=q2AA'+(1-q2)De. 

Where D is the quantum determinant of the matrix T (see (6)). 

Proof. (i) Passing a through A and using the commutation relations (4) we find 

aA = Aa + (q - q-') (ecg+ bdk- qfbg- qcdh) 

and tkom (4) we have 

bdk-qfbg=bdk-q(bf-(q-q-l)ce)g=bA,+(q'-l)ceg 

therefore t h ~  sum of the terms in the bracket is equal to bAb- qcA. and hence the 
above relation is transformed to the following form: 

aA = Aa + (q - q-') (bA6 - qcA,). 

By using the expression of the quantum determinant (6) we finally amve at (11). 

equations (9) and (10). 
The proof of (ii) is straightforward. One only needs the result of part (i) and 

Corollary. 
(i) a A " = ~ A * a + ( l - q Z " ) D A " - '  

(ii) A'An=qq"A"A' + (1 -qZ")DeA"-'. 

These formulae are proved by induction from formulae (11) and (12). One must use 
the commutativity of e and A and the fact that D is central. We now construct an 
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infinite dimensional representation of A. Let us denote by 10) a common eigenvector 
of c, e, and g which is annihilated by the lowering operators 

b10) = d10) = A'lO) = 0 (15) 

c1O)=IIO) elo)=pIO) g10)=40). (16) 

W={IZ,m, n)=fh"An/O) Z,m,nz=O}. (17) 

Then we construct the q-analogue of Verma module as follows: 

The vectors of this Verma module are eigenvectors of c, e and g: 

cll,m,n)=q'+"alZ,m,n) 

elf,m,n)=q'+"pll,m,n) 

gll, m, n)=q"+"v1f, m, n). 

Since f, h and A commute with each other we obtain 

fl l ,m,n)=Il+1,m,n) 

hlZ,m,n)= IZ, m+ 1,n) 

AII,m,n)=IZ,m,n+l). 

The action of the lowering operators are determined by using (9) and (10). The result 
is presented in the following. 

Theorem. 
(i) bll, m, n)=F+"-'(q2- 1)ApIZ-  1, m,n) 

(ii) dl[ ,m,n)=q'+"-'(q~-l)pvl l ,m-l ,n)  (20) 

(iii) A'lf,m, n) = p"(1 -qh)pq[l, m, n - 1) 

where t] is the value of the quantum determinant in the representation DIZ, m, n) = 
41, m, n). 

Proof. We only prove (iii). The other two parts ace similar. From (9) and (10) we 
have 

A'll, m, n) = A'fh"'A"l0) =qf+'"f'hmA'A"IO) 

= q'+"f'hm(q"A"A' + (1 - cf')DeA"-')IO) = &"(l - qh)pqll, m, n - 1) 

where we have used the commutativity of e and A and the centrality of D. Equations 
(1s-20) show that W is an inhi te  dimensional A module. Once one has a represen- 
tation of the subalgebra A, it is then an easy task to determine the representation of 
Mq(3) itself. One requires only to determine the action of the generators a and k on 
IZ, m, n). 
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Theorem. 
(i) kll, m, n)=q-('+'")p-'(Il, m,  n+  l)+q-'l l+I,  m+ 1, n)) 

(ii) all, m, n)=(1 -e)r]ll, m, n -  l)+pvd($'"- l ) (qx-  1)q2"-*I[- 1, m -  1, n). 
(21) 

(22) 

Proof. From (19) we have 

All, m, n)= ] I ,  m, n +  1). 

Using the fact that A has an equivalent description, namely A=ke-q-'fh we find 

(ke - q-'fh)If, m, n) = Il, m, n+ 1) 

q'+'"pkll, m,  n) -q-'Il+l, m+ 1, n)= I[, m, n + l )  
or 

which proves (i). 
For (ii) we use a similar method: 

A'IZ, m,  n) = (ae - qbd) [ I ,  m, n) 

from which we obtain using (20) 

q'+m(l - q2")pr]ll, m, n -  1) =q'+'"pa/l, m,  n) 

- q ( $ ' n - ' ( q ~ - ~ ) p ~ q m + n - z ( q g - l ) d p I ~ - l ,  m-1 ,  n)). 

Rearranging the terms gives (22). 

Remark. is not an independent parameter. One can determine its value by acting on 
any state with D.  The res& is r ]  = -q-'+v. 

Having constructed the infinite dimensional representation we are now ready to 
realize the generators of the quantum matrix group by q-bosons. We proceed along 
the lines proposed in [9]. Let us denote by E, the q-Boson algebra generated by 
elements a and at with the relations 

We consider the algebra E," generated by three commuting q-bosons and its 
natural representation on the q-Fock space F, 

Ill, m, n)) = (a:) ' (4)m(4" 

a,ll[,m,n))=[[1411~-1,m,n)) 
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If Y is the natural isomorphism from W to Fq satisfying 

Y I[, m, n)+ Ill, m, 4) 

Y*(g) = Y 0goY - 1  Vg E End W. (25) 

then the induced representation Y is defined by 

We will then find the following three-parameter family of q-boson realization of A. 

f=a:  h - 4  A=ai 
, = ) 4 i + N 3  e=pqN1+Y g= vqNz+Y 

b z ( q - q - ' ) @ N ~ l  (26) 
d = ( q - q - ' ) p v & z  

A ' = - q ( q - 4 - ' ) ~ ~ ~ &  
where N=N,+N,+N, .  By using the expression (8) for A and A' we find the 
realizations of a and k 

,+p-1q-(Ni+N6 (%+ t q a m  (27) 

a = ( q - q - ' ) ~ v q N ~ ( q - * a 3 + ~ ( q - 4 - ' ) u l a z ) .  (W 
By straightfonvard manipulations one can verify directly that the elements a,  6 ,  . . . , k 
defined as above satisfy the commutation relations of the quantum matrix algebra 

Similar methods [lo] have been used for studying @e irreducible' representations 
of twisted SU(3) group. However, the method of labeling the states and specially the 
particular choice of raising and lowering operators that we have adopted (equations 
(8-10)) are completely different from that of [lo]. With this choice the problem of 
classification of all finite dimensional irreducible representations of 3-by-3 quantum 
matrix groups simplies considerably (see Ill] for the case of GLJ3)). It may be 
interesting to do the same thing for twisted SU(3). 

W 3 ) .  
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